+2. Основные структуры

2.1 Элементы теории множеств
2.2 Операции с множествами
2.3 Функции и способы их задания
2.4 Числовые последовательности

3. Пределы. Непрерывные функции +

3.1 Предел последовательности
3.1.1 Определения
3.1.2 Арифметика пределов
3.1.3 Арифметика бесконечно малых
3.1.4 Признаки существования пределов
3.1.5 Вычисление пределов
3.1.6 Замечательный предел
3.2 Функции непрерывной переменной
3.2.1 Определения
3.2.2 Арифметика пределов
3.2.3 Арифметика бесконечно малых
3.2.4 Признаки существования пределов
3.2.5 Замечательные пределы
3.2.6 Список важнейших предельных соотношений
3.3 Непрерывные функции
3.3.1 Определения
3.3.2 Основные свойства
3.3.3 Разрывы функции

4. Производная, дифференциальное исчисление+

4.1 Производная
4.1.1 Определение производной
4.1.2 Производная от элементарных функций
4.1.3 Производная от суммы, произведения и частного функций
4.1.4 Производные от сложной функции, от обратной функции, от функции, заданной параметрически
4.1.5 Таблица производных
4.2 Первый дифференциал
4.2.1 Определение и основные свойства первого дифференциала
4.2.2 Геометрический смысл первого дифференциала
4.2.3 Дифференциал сложной функции. Инвариантность первого дифференциала
4.3 Свойства дифференцируемых функций
4.4 Правило Лопиталя и раскрытие неопреленностей

5. Высшие производные+

5.1 Определение и свойства высших производных
5.2 Определение и свойства дифференциалов высших порядков
5.3 Теорема Тейлора
5.4 Формула Тейлора для некоторых функций

6. Приложения дифференциального исчисления+

6.1 Монотонность функции и знак ее производной
6.2 Достаточное условие локального максимума/минимума
6.3 Решение задачи о глобальном максимуме/минимуме функции на замкнутом отрезке
6.4 Выпуклость вверх, выпуклость вниз, точки перегиба

7. Первообразная (неопределенный интеграл)+

7.1 Определение и основные свойства первообразных
7.2 Таблица основных первообразных
7.3 Интегрирование по частям
7.4 Замена переменной в первообразной

8. Техника вычисления первообразных+

8.1 Интегралы от дробно-рациональных функций
8.1.1 Полиномы, основные свойства
8.1.2 Дробно-рациональные функции, основные свойства
8.1.3 Выделение целой части и разложение на простейшие для дробно-рациональных функций
8.1.4 Вычисление первообразной от дробно-рациональной функции
8.2 Интегралы от тригонометрических функций
8.3 Интегралы от функций, содержащих иррациональности
8.4 Подстановки Эйлера
8.5 "Неберущиеся" интегралы

9. Определенный интеграл+

9.1 Определение
9.2 Геометрический смысл определенного интеграла
9.3 Основные свойства
9.4 Формула Ньютона-Лейбница
9.4.1 Интеграл как функция верхнего предела
9.4.2 Формула Барроу
9.4.3 Формула Ньютона-Лейбница
9.5 Интегрирование по частям в определенном интеграле
9.6 Замена переменной в определенном интеграле

10. Несобственные интегралы+

10.1 Несобственные интегралы 1 рода
10.1.1 Определение и основные свойства
10.1.2 Признаки сходимости несобственных интегралов 1 рода
10.2 Несобственные интегралы 2 рода
10.2.1 Определение и основные свойства
10.2.2 Признаки сходимости несобственных интегралов 2 рода

11. Интегралы зависящие от параметра+

12. Приложения определенных интегралов+

12.1 Площадь плоских фигур
12.2 Длина дуги кривой
12.3 Вычисление объема тел
12.4 Приложения в механике
Глава 9

10. Несобственные интегралы

10.2 Несобственные интегралы 2 рода

Если подинтегральная функция имеет на (конечном) интервале интегрирования разрыв второго рода, говорят о несобственном интеграле второго рода.

10.2.1 Определение и основные свойства

Обозначим интервал интегрирования $\left[ a, \, b \right ]$, оба этих числа ниже полагаются конечными. Если имеется всего 1 разрыв, он может находиться или в точке $a$, или в точке $b$, или внутри интервала $(a,\,b)$. Рассмотрим сначала случай, когда разрыв второго рода имеется в точке $a$, а в остальных точках подинтегральная функция непрерывна. Итак, мы обсуждаем интеграл

\begin{equation} I=\int _a^b f(x)\,dx, (22) \label{intr2} \end{equation}

причем $f(x) \rightarrow \infty $, когда $x \rightarrow a+0$. Как и ранее, прежде всего следует придать смысл этому выражению. Для этого рассмотрим интеграл

\[ I(\epsilon )=\int _{a+\epsilon}^b f(x)\,dx. \]

Определение. Пусть существует конечный предел

\[ A=\lim _{\epsilon \rightarrow +0}I(\epsilon )=\lim _{\epsilon \rightarrow +0}\int _{a+\epsilon}^b f(x)\,dx. \]

Тогда говорят, что несобственный интеграл второго рода (22) сходится, и ему приписывают значение $A$, саму функцию $f(x)$ называют интегрируемой на интервале $\left[ a, \, b\right]$.

Пример.

Рассмотрим интеграл

\[ I=\int ^1_0\frac{dx}{\sqrt{x}}. \]

Подинтегральная функция $1/\sqrt{x}$ при $x \rightarrow +0$ имеет бесконечный предел, так что в точке $x=0$ она имеет разрыв второго рода. Положим

\[ I(\epsilon )=\int ^1_{\epsilon }\frac{dx}{\sqrt{x}}\,. \]

В данном случае первообразная известна,

\[ I(\epsilon )=\int ^1_{\epsilon }\frac{dx}{\sqrt{x}}=2\sqrt{x}|^1_{\epsilon }=2(1-\sqrt{\epsilon })\rightarrow 2 \]

при $\epsilon \rightarrow +0$. Таким образом, исходный интеграл является сходящимся несобственным интегралом второго рода, причем он равен 2.

Рассмотрим вариант, когда разрыв второго рода подинтегральной функции имеется на верхнем пределе интервала интегрирования. Этот случай можно свести к предыдущему, сделав замену переменной $x=-t$ и затем переставив пределы интегрирования.

Рассмотрим вариант, когда разрыв второго рода у подинтегральной функции имеется внутри интервала интегрирования, в точке $c \in (a,\,b)$. В данном случае исходный интеграл

\begin{equation} I=\int _a^bf(x)\,dx (23) \label{intr3} \end{equation}

представляют в виде суммы

\[ I=I_1+I_2, \quad I_1=\int _a^cf(x)\,dx +\int _c^df(x)\,dx. \]

Определение. Если оба интеграла $I_1, \, I_2$ сходятся, то несобственный интеграл (23) называют сходящимся и ему приписывают значение, равное сумме интегралов $I_1, \, I_2$, функцию $f(x)$ называют интегрируемой на интервале $\left[ a, \, b\right]$. Если хотя бы один из интегралов $I_1,\, I_2$ является расходящимся, несобственный интеграл (23) называют расходящимся.

Сходящиеся несобственные интегралы 2 рода обладают всеми стандартными свойствами обычных определенных интегралов.

1. Если $f(x)$, $g(x)$ интегрируемы на интервале $\left[ a, \,b \right ]$, то их сумма $f(x)+g(x)$ также интегрируема на этом интервале, причем \[ \int _a^{b}\left(f(x)+g(x)\right )dx=\int _a^{b}f(x)dx+\int _a^{b}g(x)dx. \] 2. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, то для любой константы $C$ функция $C\cdot f(x)$ также интегрируема на этом интервале, причем \[ \int _a^{b}C\cdot f(x)dx=C \cdot \int _a^{b}f(x)dx. \] 3. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, причем на этом интервале $f(x)>0$, то \[ \int _a^{b} f(x)dx\,>\,0. \] 4. Если $f(x)$ интегрируема на интервале $\left[ a, \, b \right ]$, то для любого $c\in (a, \,b)$ интегралы \[ \int _a^{c} f(x)dx, \quad \int _c^{b} f(x)dx \] тоже сходятся, причем \[ \int _a^{b}f(x)dx=\int _a^{c} f(x)dx+\int _c^{b} f(x)dx \] (аддитивность интеграла по интервалу).

Пример.

Рассмотрим интеграл

\begin{equation} I=\int _0^{1}\frac{1}{x^k}\,dx. (24) \label{mod2} \end{equation}

Если $k>0$, подинтегральная функция стремится к $\infty$ при $x \rightarrow +0$, так что интеграл - несобственный второго рода. Введем функцию

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x^k}\,dx. \]

В данном случае первообразная известна, так что

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x^k}\,dx\,=\frac{x^{1-k}}{1-k}|_{\epsilon}^1= \frac{1}{1-k}-\frac{\epsilon ^{1-k}}{1-k}. \]

при $k \neq 1$,

\[ I(\epsilon)=\int _{\epsilon}^{1}\frac{1}{x}\,dx\,=lnx|_{\epsilon}^1= -ln \epsilon. \]

при $k = 1$. Рассматривая поведение при $\epsilon \rightarrow +0$, приходим к выводу, что интеграл (20) сходится при $k<1$, а при $k \geq 1$ - расходится.

10.2.2 Признаки сходимости несобственных интегралов 2 рода

Будем для определенности считать, что разрыв второго рода у функции $f(x)$ имеется в точке $a$.

Теорема(первый признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны при $x\in (a,\,b)$, причем $0 1. Если интеграл \[ \int _a^{b}g(x)dx \] сходится, то сходится и интеграл \[ \int _a^{b}f(x)dx. \] 2. Если интеграл \[ \int _a^{b}f(x)dx \] расходится, то расходится и интеграл \[ \int _a^{b}g(x)dx. \]

Теорема(второй признак сравнения). Пусть $f(x)$, $g(x)$ - непрерывны и положительны при $x\in (a,\,b)$, причем существует конечный предел

\[ \theta = \lim_{x \rightarrow a+0} \frac{f(x)}{g(x)}, \quad \theta \neq 0, \, +\infty. \]

Тогда интегралы

\[ \int _a^{b}f(x)dx, \quad \int _a^{b}g(x)dx \]

сходятся или расходятся одновременно.

Пример.

Рассмотрим интеграл

\[ I=\int _0^{1}\frac{1}{x+\sin x}\,dx. \]

Подинтегральное выражение - положительная функция на интервале интегрирования, подинтегральная функция стремится к $\infty$ при $x \rightarrow +0$, так что наш интеграл - несобственный второго рода. Далее, при $x \rightarrow +0$ имеем: если $g(x)=1/x$, то

\[ \lim _{x \rightarrow +0}\frac{f(x)}{g(x)}=\lim _{x \rightarrow +0}\frac{x}{x+\sin x}=\frac{1}{2} \neq 0,\, \infty \, . \]

Применяя второй признак сравнения, приходим к выводу, что наш интеграл сходится или расходится одновременно с интегралом

\[ \int _0^{+1}\frac{1}{x}\,dx . \]

Как было показано в предыдущем примере, этот интеграл расходится ($k=1$). Следовательно, исходный интеграл тоже расходится.

Задачи.

Вычислить несобственный интеграл или установить его сходимость (расходимость).

1. \[ \int _{0}^{1}\frac{dx}{x^3-5x^2}\,. \] 2. \[ \int _{3}^{7}\frac{x\,dx}{(x-5)^2}\,. \] 3. \[ \int _{0}^{1}\frac{x\,dx}{\sqrt{1-x^2}}\,. \] 4. \[ \int _{0}^{1}\frac{x^3\,dx}{1-x^5}\,. \] 5. \[ \int _{-3}^{2}\frac{dx}{(x+3)^2}\,. \] 6. \[ \int _{1}^{2}\frac{x^2\,dx}{(x-1)\sqrt{x-1}}\,. \] 7. \[ \int _{0}^{1}\frac{dx}{\sqrt{x+x^2}}\,. \] 8. \[ \int _{0}^{1/4}\frac{dx}{\sqrt{x-x^2}}\,. \] 9. \[ \int _{1}^{2}\frac{dx}{xlnx}\,. \] 10. \[ \int _{1}^{2}\frac{x^3\,dx}{\sqrt{4-x^2}}\,. \] 11. \[ \int _{0}^{\pi /4}\frac{dx}{\sin ^4x}\,. \]